
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISCOVERING THE GEMS IN EARLY LAYERS: ACCEL-
ERATING LONG-CONTEXT LLMS WITH 1000X INPUT
TOKEN REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
handling long context inputs, but this comes at the cost of increased computa-
tional resources and latency. Our research introduces a novel approach for the
long context bottleneck to accelerate LLM inference and reduce GPU memory
consumption. Our research demonstrates that LLMs can identify relevant tokens
in the early layers before generating answers to a query. Leveraging this insight,
we propose an algorithm that uses early layers of an LLM as filters to select and
compress input tokens, significantly reducing the context length for subsequent
processing. Our method, GemFilter, demonstrates substantial improvements in
both speed and memory efficiency compared to existing techniques, such as stan-
dard attention and SnapKV/H2O. Notably, it achieves a 2.4× speedup and 30%
reduction in GPU memory usage compared to SOTA methods. Evaluation on the
Needle in a Haystack task shows that GemFilter significantly outperforms stan-
dard attention, SnapKV and demonstrates comparable performance on the Long-
Bench challenge. GemFilter is simple, training-free, and broadly applicable across
different LLMs. Crucially, it provides interpretability by allowing humans to in-
spect the selected input sequence. These findings not only offer practical benefits
for LLM deployment, but also enhance our understanding of LLM internal mech-
anisms, paving the way for further optimizations in LLM design and inference.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive abilities (Wei et al., 2022; Bubeck
et al., 2023) and found widespread application in various AI systems, such as ChatGPT (Schulman
et al., 2022), Gemini (Anil et al., 2023), and Claude (Anthropic, 2024), and so on. They are also
a fundamental component in building language-based AI agents that can orchestrate plans and ex-
ecute complex tasks through interaction with external tools. A key requirement for many of these
applications is the ability to process long-context inputs. This ability can also potentially eliminate
the need of a retriever in retrieval augmented generation (RAG) (Xu et al., 2024a) or enhance its per-
formance (Jiang et al., 2024c). Therefore, significant efforts have been made recently to build LLMs
that support long context inputs. For instance, LLaMA 3.1 (Dubey et al., 2024), Mistral (Jiang et al.,
2023a), and Phi 3.5 (Abdin et al., 2024) now support input sequences of up to 128K tokens, while
Gemini can handle inputs of up to 1M tokens. However, processing such lengthy inputs comes at
a substantial cost in terms of computational resources and time. Therefore, accelerating the LLM
generation speed while simultaneously reducing GPU memory consumption for long-context inputs
is essential to minimize response latency and increase throughput for LLM API calls.

One prominent optimization for fast text generation in decoder-only LLMs (i.e., using a causal
attention mask) is the KV cache. Specifically, there are two phases involved in auto-regressive
generation. Given a long context input, the first is the prompt computation phase, when the LLM
computes the KV cache for all layers, storing the intermediate attention keys and values of the input
tokens. Next, in the iterative generation phase, the LLM generates tokens iteratively using the pre-
computed KV cache, avoiding redundant computations. GPU memory usage and running time scale
linearly with the KV cache size, meaning that the computational is high for long inputs.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Text selection 
on the first 
few layer 

Full LLM

Top k selection based 
on the last row of 
attention matrix

108,172 tokens
100 tokens 1,000 times 

compress 
<|begin_of_text|><|im_start|> This is 
a very long story book: <book> 
October 2015 When I talk to a startup 
that's been operating for more than 
……
as a scripting language for Unix. (It 
would be hard to make it worse.
The best thing to do in San 
Francisco is eat a sandwich and sit 
in Dolores Park on a sunny day.
) But I think there are areas where 
……
If you look at the history of programmi 
</book>.
Based on the content of the book, 
Question: What is the best thing to 
do in San Francisco?
Answer:

<|begin_of_text|>

<||> This book: < What a bang that 
balloon is going

to make when someone pops it by: 

Woman with hammer.N trick to call 
That sounds hipper than Lisp toThe 
best thing to do in San Francisco 
is eat a sandwich and sit in 
Dolores Park on a sunny day.

) But you. trash I sawcarrying case.  
I looked inside Is real at

and say," and Question: What is 
the to do in San Francisco?

Answer:

Figure 1: Illustration of our method GemFilter: generation with context selection based on early
filter layers. We demonstrate a real Needle in a Haystack task (Section 4.1). The original input
consists of 108,172 tokens, including the initial instruction, key message, and the query. In the
first step, we use the 13th layer of the LLM (LLaMA 3.1 8B Instruct) as a filter to compress the
input tokens by choosing the top k indices from the last row of the attention matrix. Notably, the
selected input retains the initial instruction, key message, and query. GemFilter achieves a 1000×
compression, reducing the input token length to 100. In the second step, we feed the selected tokens
for full LLM inference using a standard generation function, which produces the correct output.
GemFilter significantly reduces running time and GPU memory with negligible performance loss.

To reduce GPU memory usage and running time during the iterative generation phase, H2O (Zhang
et al., 2023) and SnapKV (Li et al., 2024b) introduce static methods to compress/evict the KV cache.
These techniques can shrink the KV cache size from 128K to 1024 with negligible performance
loss, resulting in faster speeds and lower GPU memory consumption during the iterative generation
phase. However, these methods do not improve the efficiency of the prompt computation phase,
which becomes the dominant bottleneck as the input context lengthens. Thus, we ask:

Can we accelerate the speed and reduce memory usage during the prompt computation phase?

Top k selection 
based on last row

A
tte

nt
io

n 
M

at
rix

: Q
KT

Useful information 
for retrieval

Figure 2: The last row of attention
matrices in early layers can locate
answer-related tokens.

We observe that when serving a query, LLMs often find the
necessary information in the early layers, even before generat-
ing the answer. Specifically, the relevant tokens can be iden-
tified using the attention matrix from these early layers (Fig-
ure 2), which we refer to as filter layers. Figure 1 provides a
real example from the Needle in a Haystack task, where LLMs
must find a small piece of information within a large context.
For LLaMA 3.1 8B, we observe that the information needed
to answer the query can be distilled from the attention matrix
in any of the 13th-19th layers. Furthermore, LLMs explicitly
summarize the required information in these filter layers. As
a consequence, we only need to perform the prompt computa-
tion on a long context input for the filter layers, allowing us to
compress the input tokens into a smaller subset (e.g., reducing
from 128K tokens to 100), saving both time and GPU memory.
We then feed the selected tokens for full model inference and
proceed with a standard generation function. Algorithm 1 in
Section 3 presents our method GemFilter.

As shown in Figure 3, GemFilter runs faster and consumes less GPU memory than SnapKV/H2O
and standard attention (full KV cache) during the prompt computation phase. During the iterative
generation phase, GemFilter has the same running time and GPU memory consumption as Snap-
KV/H2O, both of which outperform standard attention. We discuss the complexity further in Sec-
tion 3.2 theoretically and in Section 4.5 empirically. GemFilter significantly outperforms standard
attention and SnapKV on the Needle in a Haystack benchmark (Section 4.1). Additionally, on Long-
Bench, a multi-task benchmark designed to rigorously evaluate long-context understanding across

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

8192 16384 32768 65536 131072
Input token number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ru
nn

in
g 

tim
e:

 se
co

nd
s

LLaMA 3.1 8B Instruct running time comparison
standard prompt time
standard gen time
snapkv prompt time
snapkv gen time
gemfilter prompt time
gemfilter gen time

8192 16384 32768 65536 131072
Input token number

0

10

20

30

40

50

60

GP
U 

Pe
ak

 M
em

or
y:

 G
B

LLaMA 3.1 8B Instruct GPU memory comparison
standard prompt GPU mem
standard gen GPU mem
snapkv prompt GPU mem
snapkv gen GPU mem
gemfilter prompt GPU mem
gemfilter gen GPU mem

Figure 3: Comparison of time and GPU memory usage across different methods on LLaMA 3.1
8B Instruct. ‘gemfilter’ represents our method, using the 13th layer as the filter. It achieves a 2.4×
speedup and reduces GPU memory usage by 30% compared to SnapKV. The iterative generation is
evaluated on 50 tokens generation. Additional results can be found in Section 4.5.

various datasets, GemFilter achieves performance comparable to SnapKV/H2O (Section 4.2). Fur-
thermore, our ablation study in Section 4.3 shows that our method is quite robust to the filter layer
selection strategy and Section 4.4 shows that each component in our algorithm is essential.

Our contributions and advantages are:

• We found that LLMs can identify relevant tokens using attention matrices in the early layers,
suggesting crucial information is recognized before the answer generation. Furthermore, LLMs
explicitly summarize this information within specific filter layers. This observation provides in-
sights into LLM mechanisms and opens avenues for LLM understanding and algorithm design.

• Leveraging this insight, we develop GemFilter, formulated in Algorithm 1, an inference strategy
which utilizes early LLM layers as a filter to select and compress input tokens into a small subset
to be processed by the full model (Figure 1). GemFilter achieves a 2.4× speedup and reduces
GPU memory consumption by 30% compared to the state-of-the-art methods like SnapKV.

• GemFilter significantly outperforms both standard attention (all KV cache) and SnapKV on the
Needle in a Haystack benchmark (Section 4.1), while maintaining performance comparable to
SnapKV/H2O on the LongBench benchmark (Table 1).

• We provide a thorough ablation studies for the GemFilter in Section 4.3 and Section 4.4.
• Our approach offers several advantages: it is simple, training-free, and broadly applicable to var-

ious LLMs. Furthermore, it enhances interpretability by allowing humans to directly inspect the
selected token sequence.

2 RELATED WORKS

Generation Speed-up with Long Context Input. One effective technique to accelerate auto-
regressive generation is KV cache compression/eviction. During generation, LLMs store the previ-
ous key and value matrices to reduce computational complexity. However, when the input context is
long (e.g., 128K tokens), the memory consumption and running time associated with the KV cache
dominate iterative generation. Many studies have focused on KV cache eviction. For instance, Ge
et al. (2023) evict long-range contexts on attention heads to prioritize local contexts, using the KV
cache only for heads that broadly attend to all tokens. Streaming LLM (Xiao et al., 2023) introduces
an attention sink that retains only the first few tokens and the latest k tokens in the KV cache to
enable fast streaming generation. LOOK-M (Wan et al., 2024) applies KV eviction in the multi-
modality so that the model only needs to look once for the image. LongWriter (Bai et al., 2024) uses
KV eviction to enable LLMs to generate coherent outputs exceeding 20,000 words. MInference
1.0 (Jiang et al., 2024a) introduces ∧-shape, vertical-slash, and block-sparse attention head and de-
termines the optimal KV cache pattern for each attention head offline and dynamically builds sparse
indices based on the assigned query during inference. QuickLLaMA (Li et al., 2024a) classifies
the KV cache to many subsets, e.g., query tokens, context tokens, global tokens, and local tokens,
and only preserves some types of tokens in the KV cache. ThinK (Xu et al., 2024b) proposes a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

query-dependent KV cache pruning method by pruning the least significant channel dimensions of
the KV cache. H2O (Zhang et al., 2023) retains only tokens contributing to cumulative attention.
SnapKV (Li et al., 2024b) evicts non-essential KV positions for each attention head based on ob-
servation windows. While the aforementioned studies focus on eviction and compression of the KV
cache during the prompt computation phase to optimize the iterative generation phase, they do not
reduce the running time or GPU memory usage during the prompt computation phase. In contrast,
our method, GemFilter, achieves both reduced running time and GPU memory usage in the prompt
computation phase, as well as during the iterative generation phase. We provide a more detailed
comparison in Appendix B.

More related to our work, Li et al. (2023) compress input sequences by pruning redundancy in the
context, making inputs more compact. However, they need to keep 50% of input tokens to keep
the LLMs’ performance, whereas GemFilter achieves comparable performance by only reserving
1% of input tokens. For further details, we refer the reader to Section 4.1. The LLMLingua series
methods (Jiang et al., 2023b; Pan et al., 2024; Jiang et al., 2024b) present a coarse-to-fine approach
for prompt compression. It leverages a budget controller to ensure semantic integrity even at high
compression ratios, employs a token-level iterative compression algorithm to model interdependen-
cies within the compressed content, and utilizes an instruction-tuning strategy to achieve distribution
alignment across language models.

3 METHOD

Notations and Preliminary. While the Transformer and self-attention architecture (Vaswani et al.,
2017) have already become overwhelmingly popular, we first introduce preliminary definitions to
provide a better methodological connection to our proposed GemFilter method in Section 3.1.

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use ◦ to denote function
composition and ⊙ to denote the Hardamard product. Let n be the input token/prompt length, d the
hidden feature dimension, and V the vocabulary set. We now introduce the key concept of attention
and transformers. We first define the query, key, and value matrices. It is important to note that
during text generation, the key and value matrices are also referred to as the KV cache, as they are
stored in GPU memory to reduce running time during the iterative prediction of the next token.
Definition 3.1 (Single layer self-attention). Let Q ∈ Rn×d be the query matrix , K ∈ Rn×d the key
cache, and V ∈ Rn×d the value cache. Let Mc ∈ {0, 1}n×n be the causal attention mask, where
(Mc)i,j is 1 if i ≥ j and 0 otherwise. The self-attention function Attn is defined as:

Attn(Q,K, V ) = Mc ⊙ Softmax(QK⊤/
√
d) · V

Definition 3.2 (Multi-layer transformer). Let T ∈ Vn represent the input tokens, and let m denote
the number of transformer layers. Let gi represent components in the i-th transformer layer other
than self-attention, such as layer normalization, residual connections, and the MLP block, where
gi : Rn×d → Rn×d for any i ∈ {0, 1, . . . ,m}. Let Attni denote the self-attention module in the i-th
transformer layer. We define an m-layer transformer F1:m : Vn → Rn×d as

F1:m(T ) := gm ◦ Attnm ◦ gm−1 ◦ · · · ◦ g1 ◦ Attn1 ◦ g0 ◦ E(T ) ∈ Rn×d,

where E is the input embedding function mapping the input tokens to hidden features using the
vocabulary dictionary, i.e., E(T ) ∈ Rn×d.

Note that the above definitions use a single attention head for simplicity, but in practice, multi-head
attention is used (Vaswani et al., 2017).

3.1 OUR ALGORITHM: GEMFILTER

We present our method, GemFilter, in Algorithm 1. We also present PyTorch code in Appendix D.1
for the reader’s interests. The high-level idea is to run the LLM twice. In the first pass, we run
only the early layers of the LLM to select the key input tokens. This corresponds to the prompt
computation phase (Line 4-7 of Algorithm 1). This process selects the top k tokens that receive
the most attention from the last query token. In the second pass, we feed the selected tokens to the
full LLM and run the generation function, corresponding to the iterative generation phase (Line 8).
Below, we explain Algorithm 1 step by step.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 GemFilter: Generation with Token Selection Based on Early Layers

1: procedure SELECTIONGEN(F1:m, T ∈ [V]n, r ∈ [m], k ∈ [n])
2: ▷ F1:m : An m-layer transformer network; T : input sequence of tokens
3: ▷ r: filter layer index for token selection; k: number of selected tokens
4: Get Q(r),K(r) by doing a r-layer forward pass: F1:r(T )
5: ▷ Q(r),K(r) ∈ Rn×d: the r-th layer query, key

6: J ← topk index(Q
(r)
n K(r)⊤, k) ▷ Q

(r)
n : the last row of Q(r); Q(r)

n K(r)⊤ ∈ Rn are attn scores
7: Sort the indices in J ▷ J ⊆ [n] and |J | = k
8: return GEN(F1:m, TJ) ▷ GEN is generation function, TJ ∈ [V]k is a sub-sequence of T on J
9: end procedure

The input of the algorithm is an m-layer transformer F1 (Definition 3.2), an input token sequence
T ∈ Vn, and two hyperparameters r ≤ m, k ≤ n, where r represents the index of the filter layer
for context token selection and k denotes the number of tokens to select. For example, in the case of
LLaMA 3.1 8B Instruct (Figure 1), we have m = 32, r = 13, and k = 1024.

In the first step (Line 4), we run only the first r layers forward to serve as a filter, obtaining the
r-th layer’s query and key matrices, Q(r) and K(r). Note that we do not need to run all layers of
the LLM on a long context input, thereby saving both computation time and memory (see detailed
analysis in Section 3.2). In Line 6, we select token indices based on the r-th layer attention matrix.
The selection is made by identifying the k largest values from the last row of the attention matrix,
i.e., the inner product between the last query token Q

(r)
n and all key tokens K(r). For multi-head

attention, the top-k indices are selected based on the summation of the last row across the attention
matrices of all heads. For instance, suppose we have h attention heads, and let Q(r,j),K(r,j) ∈ Rn×d

represent the query and key matrices for the r-th layer and j-th attention head. Then, we compute
J ← topk index(

∑h
j=1 Q

(r,j)
n K(r,j)⊤, k), where J is a set of top k index selection. Note that our

method uses a single index set J , whereas SnapKV (Li et al., 2024b) and H2O (Zhang et al., 2023)
use different index sets for each layer and attention head, resulting in m · h index sets in total. A
detailed discussion is provided in Appendix B.

In Line 6, J is sorted by inner product values. However, we need to re-sort J so that the selected
tokens follow their original input order, ensuring, for example, that the ⟨bos⟩ token is placed at the
beginning. Line 7 performs this reordering operation. Finally, in Line 8, we can run any language
generation function using the selected tokens TJ , which is a sub-sequence of T on the index set J ,
across all layers. This generation is efficient as the input context length is reduced from n to k, e.g.,
from 128K to 1024 tokens in Figure 1. Below, we provide a formal time complexity analysis.

3.2 RUNNING TIME AND MEMORY COMPLEXITY ANALYSIS

The results of our analysis on time complexity and GPU memory consumption are presented in
Theorem 3.3 below, with the proof deferred to Appendix C.

Theorem 3.3 (Complexity analysis). Let n be the input sequence (prompt) length and d the hidden
feature dimensions. In our Algorithm 1, GemFilter uses the r-th layer as a filter to select k input
tokens. Let SnapKV and H2O also use k as their cache size. Assume the LLM has m attention layers,
each with h attention heads, and each transformer layer’s parameters consume w GPU memory.
Assuming that we generate t tokens with the GEN function and n ≥ max{d, k, t}, the following
table summarizes the complexity for standard attention, SnapKV and H2O, and GemFilter:

Complexity Standard attention SnapKV and H2O GemFilter

Time Prompt Comp. Θ(mhn2d) Θ(mhn2d) Θ(rhn2d)
Iter. generation Θ(mh(nt+ t2)d) Θ(mh(kt+ t2)d) Θ(mh(k2 + t2)d)

GPU mem. Prompt Comp. mw + 2mhnd mw + 2hnd+ 2mhkd rw + 2hnd
Iter. generation mw + 2mh(n+ t)d mw + 2mh(k + t)d mw + 2mh(k + t)d

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Recall that there are two phases in text generation. The first phase is prompt computation, which
involves attention computation on the long context input tokens and generating the KV cache. The
second phase is iterative generation, where auto-regressive generation occurs based on the pre-
computed KV cache. Theorem 3.3 demonstrates that GemFilter is faster and consumes less GPU
memory than SnapKV/H2O and standard attention during the prompt computation phase. Addition-
ally, during the iterative generation phase, GemFilter has the same running time and GPU memory
consumption as SnapKV/H2O, which is significantly better than standard attention. This conclusion
aligns with our experimental results in Section 4.5.

Case Study. Let us consider the case n ≫ k ≈ t, e.g., n =128K, k = t = 1024 and r < m.
During the prompt computation phase, we have the running time and the GPU memory consumption:

Standard attention : SnapKV/H2O : GemFilter = Θ(m : m : r),

Standard attention : SnapKV/H2O : GemFilter ≈ mw +mhnd : mw + hnd : rw + hnd,

We see that GemFilter has a lower time complexity and less GPU memory consumption than stan-
dard attention, SnapKV, and H2O. During the iterative generation phase, we have the running time
and the GPU memory consumption:

Standard attention : SnapKV/H2O : GemFilter = Θ(n : k : k),

Standard attention : SnapKV/H2O : GemFilter ≈ w/hd+ 2n : w/hd+ 4k : w/hd+ 4k,

As such, GemFilter has the same time complexity and GPU memory consumption as SnapKV/H2O,
while significantly outperforming the standard attention. The running time bottleneck for all meth-
ods occurs during prompt computation, which takes Θ(mhn2d) for standard attention, SnapKV, and
H2O. In contrast, GemFilter only requires Θ(rhn2d) for prompt computation, as it only processes
the early layers of the LLMs to select and compress the input tokens during the first run. See detailed
proof in Appendix C. Note that the GPU memory bottleneck for standard attention occurs during
iterative generation, while for other methods, the memory bottleneck arises during prompt compu-
tation due to the reduced KV cache. GemFilter consumes less GPU memory than SnapKV and H2O
because it only requires loading some layer model weights when processing the long context input
in its first run. Our empirical results in Section 4.5 support our complexity analysis findings.

4 EXPERIMENTS

Model and Datasets. We evaluated our approach using three popular long-context models:
LLaMA 3.1 8B Instruct1 (Dubey et al., 2024), Mistral Nemo 12B Instruct2 (Jiang et al., 2023a),
and Phi 3.5 Mini 3.8B Instruct3 (Abdin et al., 2024), all of which support an input token length
of 128K. We compared our method, GemFilter, against standard attention and two state-of-the-art
methods, SnapKV (Li et al., 2024b) and H2O (Zhang et al., 2023)4. For our experiments, we used
two popular datasets: Needle in a Haystack (Kamradt, 2024) (Section 4.1) and LongBench (Bai
et al., 2023) (Section 4.2). More implementation details are provided in Appendix D.2.

Filter Layer. Except for Section 4.3, for context selection, we always use the index of 13 out of
32, 19 out of 40, and 19 out of 32 layers as the input filter for LLaMA 3.1, Mistral Nemo and Phi
3.5, respectively. In Section 4.3, we provide an ablation study for the filter layer choice.

4.1 NEEDLE IN A HAYSTACK

The Needle in a Haystack (Kamradt, 2024) benchmark serves as a pressure test, challenging LLMs
to retrieve accurate information from a specific sentence (the ‘needle’) hidden within an extensive
document (the ‘haystack’), where the sentence can appear at any arbitrary location. The difficulty
increases as the length of the haystack grows. We use input lengths of 60K for Mistral Nemo 12B

1
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

2
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407

3
https://huggingface.co/microsoft/Phi-3.5-mini-instruct

4While there are many other generation acceleration methods, they may not be directly comparable to ours
as they use orthogonal techniques. We refer the reader to Section 2 for further details.

6

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/microsoft/Phi-3.5-mini-instruct


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct All KV 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct All KV 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) All KV. Mistral Nemo average score: 0.486; LLaMA 3.1 average score: 0.841.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct SnapKV-1024 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct SnapKV-1024 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) SnapKV-1024. Mistral Nemo average score: 0.494; LLaMA 3.1 average score: 0.749.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct GemFilter-1024 (layer-19) 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-13) 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) GemFilter-1024. Mistral Nemo average score: 0.838; LLaMA 3.1 average score: 0.887.

Figure 4: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model (left column) and the LLaMA 3.1 8B Instruct model (right column). Re-
sults for the Phi 3.5 Mini 3.8B Instruct model are provided in Appendix D.3. The x-axis represents
the length of the input tokens, while the y-axis shows the position depth percentage of the ‘needle’
information (e.g., 0% indicates the beginning, and 100% indicates the end). A higher score reflects
better performance, meaning more effective retrieval of the ‘needle’ information. GemFilter signifi-
cantly outperforms both standard attention (full KV cache) and SnapKV.

Instruct and 120K for LLaMA 3.1 8B Instruct, as these are the maximum lengths for standard atten-
tion on two A100-40GB GPUs. The KV cache size is set to 1024 for both SnapKV and GemFilter.
In Figure 4, we see that GemFilter significantly outperforms both All KV (standard attention) and
SnapKV with Mistral Nemo and LLaMA 3.1.5 The Needle in a Haystack results suggest that our
method, GemFilter, achieves superior retrieval performance for long input contexts compared to
SnapKV and standard attention. Additional results are provided in Appendix D.3.

4.2 LONGBENCH

LongBench (Bai et al., 2023) is a multi-task benchmark designed to rigorously evaluate long-context
understanding capabilities across various datasets, including single- and multi-document Question
Answering (QA), summarization, few-shot learning, and synthetic tasks. We evaluate the English-
only dataset, following Li et al. (2024b); Xu et al. (2024b). Note that we do not use a chat template
in Table 1. See Table 3 in Appendix D.7 for more results of using a chat template.

5H2O cannot be implemented with FlashAttention due to its cumulative attention score strategy and is
therefore unable to handle super long input contexts, which is why we exclude it here, following Li et al.
(2024b); Xu et al. (2024b).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison on LongBench across various LLMs and methods. A larger
number means better performance. The best score is boldfaced.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic

Average

Nrtv
QA

Qasp
er

MF-en

HotpotQ
A

2WikiM
QA

Musiq
ue

Gov
Rep

ort

QMSum

MultiN
ew

s

TREC

Triv
iaQ

A

SAMSum

PCount
PRe

LLaMA 3.1 8B Instruct
All KV 32.02 13.04 27.34 16.23 16.05 11.22 34.52 23.41 26.89 73.0 91.64 43.8 7.16 97.73 36.72
H2O-4096 22.94 12.61 26.48 16.63 15.81 10.14 33.51 23.47 26.81 69.0 91.15 43.97 6.66 71.67 33.63
MInference 27.52 14.72 28.89 17.55 15.22 10.58 34.76 22.34 26.64 72.5 89.78 41.94 7.59 92.91 35.92
LLMLingua-1024 11.73 6.28 12.43 13.82 12.92 8.15 22.82 20.18 23.32 24.0 66.75 24.02 9.09 4.24 18.55

SnapKV-1024 31.98 11.17 25.33 14.81 15.73 10.69 26.95 22.89 25.86 67.5 91.89 42.85 7.67 98.16 35.25
GemFilter-1024 20.71 11.0 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.0 90.7 42.5 7.15 92.22 34.50

SnapKV-2048 31.45 11.94 26.24 15.73 16.03 11.66 29.64 23.24 26.44 69.5 91.48 42.68 7.21 98.03 35.80
GemFilter-2048 24.36 12.63 25.39 19.58 17.03 14.11 33.15 22.31 26.49 69.5 91.59 42.64 4.61 98.75 35.87

SnapKV-4096 32.13 13.12 27.38 16.11 16.08 11.6 32.39 23.47 26.76 71.5 91.64 43.46 7.33 97.24 36.44
GemFilter-4096 25.66 12.95 27.38 17.76 15.6 12.02 34.17 23.25 26.87 70.0 92.36 43.34 5.96 98.0 36.09

Mistral Nemo 12B Instruct
All KV 28.91 40.74 54.65 52.15 48.36 30.28 30.66 23.53 26.31 75.0 89.66 44.32 4.5 100.0 46.36
H2O-4096 31.61 39.52 54.75 47.83 48.09 27.0 30.44 23.21 26.42 72.5 89.76 44.47 3.0 73.0 43.69
LLMLingua-1024 19.24 16.92 21.43 30.94 25.09 13.24 21.96 19.8 23.94 24.5 68.48 33.33 4.0 5.0 23.42

SnapKV-1024 26.42 38.49 52.96 51.21 47.86 27.06 24.32 22.66 25.52 73.0 89.82 43.16 3.5 100.0 44.71
GemFilter-1024 27.53 40.68 53.86 55.51 55.43 34.11 27.25 21.16 25.56 69.0 87.32 42.49 4.0 88.06 45.14

SnapKV-2048 25.85 40.69 54.48 51.96 49.06 26.95 26.29 23.17 25.9 74.5 89.66 43.89 4.0 99.5 45.42
GemFilter-2048 29.27 41.53 54.91 57.62 54.97 35.09 29.34 22.58 26.19 72.0 89.65 44.93 4.0 97.5 47.11
SnapKV-4096 27.92 40.9 54.75 51.69 48.16 29.19 29.17 23.36 26.35 75.0 89.66 43.93 4.5 100.0 46.04
GemFilter-4096 30.29 39.9 56.48 58.78 51.48 32.81 30.32 23.21 26.48 71.5 90.24 42.13 2.0 99.5 46.79

Phi 3.5 Mini 3.8B Instruct
All KV 27.51 17.23 35.63 21.7 25.7 11.68 34.14 23.17 24.95 71.5 87.37 13.08 7.17 83.85 34.62
H2O-4096 19.74 16.23 34.17 21.02 23.05 10.49 33.42 21.95 24.95 67.5 86.13 16.71 1.55 47.46 30.31
LLMLingua-1024 8.58 6.74 14.93 12.37 11.01 4.48 21.23 17.08 20.75 24.0 56.09 23.01 0.96 3.79 16.07

SnapKV-1024 24.31 16.03 34.93 20.72 26.02 13.74 28.27 22.03 24.02 67.5 87.71 14.57 6.08 85.6 33.68
GemFilter-1024 16.57 18.29 35.91 24.22 26.1 9.7 30.29 18.96 23.64 64.5 85.85 23.02 0.2 81.12 32.74

SnapKV-2048 26.41 16.59 36.99 21.8 26.07 12.57 30.88 22.37 24.51 69.5 87.54 13.13 6.57 83.92 34.20
GemFilter-2048 19.63 14.84 35.99 21.38 19.72 10.13 32.39 21.24 24.71 65.0 86.49 20.47 2.17 69.5 31.69

SnapKV-4096 27.25 17.42 36.9 21.37 25.42 12.55 32.9 22.6 24.87 70.5 87.45 13.28 6.81 84.04 34.53
GemFilter-4096 20.95 19.98 35.22 28.82 28.21 13.98 34.2 22.45 25.08 64.5 85.86 18.68 3.43 65.56 33.35

For each LLM, we evaluate GemFilter and SnapKV with selected tokens/KV caches of 1024, 2048,
and 4096. We also evaluated standard attention (all KV cache) and H2O with a KV cache size of
4096 on the LongBench dataset to further demonstrate the performance of GemFilter, following Li
et al. (2024b). Table 1 shows a negligible performance drop in LLMs using GemFilter compared
to standard attention, even with only 1024 selected tokens. In some cases, GemFilter even outper-
forms standard attention, such as GemFilter-2048 for Mistral Nemo 12B Instruct. It demonstrates
significantly better performance than H2O and comparable performance with SnapKV. Furthermore,
GemFilter effectively filters key information in long contexts, provides interpretable summaries, and
compresses the input context effectively, e.g., it reduces input tokens to an average of 8% when using
1024 tokens, and 32% when using 4096, with negligible accuracy drops.

In the section, we also evaluated on two important baselines, MInference (Jiang et al., 2024a) and
LLMLingua (Jiang et al., 2023b)6. We can see that MInference (Jiang et al., 2024a) has com-
patible performance with SnapKV, while it requires offline to determine the best attention pattern,
which cannot save the prompt computation phase running time. We can see that although LLMLin-
gua (Jiang et al., 2023b) achieves a good comparison rate, the performance may not be satisfactory.

4.3 ABLATION STUDY: FILTER LAYER CHOICE

In this section, we explore which layer should be chosen as the input filter. First, we aim to determine
which layer of the LLM can best identify the position of the needle information. In Figure 5, we

6We skip LongLLMLingua Jiang et al. (2024b) for a fair comparison, as it requires explicitly separating the
input context into text information and questions, while other methods do not require that.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
LLaMA 3.1 8B Instruct layer index

0

10000

20000

30000

40000
To

ke
n 

di
st

an
ce

Input: 108172 tokens. The distance between 
top 1024 nearest neighbors and needle position.

(a) LLaMA 3.1 8B Instruct

0 5 10 15 20 25 30 35 40
Mistral Nemo 12B Instruct layer index

0

2500

5000

7500

10000

12500

15000

17500

20000

To
ke

n 
di

st
an

ce

Input: 55989 tokens. The distance between 
top 1024 nearest neighbors and needle position.

(b) Mistral Nemo 12B Instruct

0 5 10 15 20 25 30
Phi 3.5 Mini 3.8B Instruct layer index

0

10000

20000

30000

40000

50000

60000

To
ke

n 
di

st
an

ce

Input: 122647 tokens. The distance between 
top 1024 nearest neighbors and needle position.

(c) Phi 3.5 Mini 3.8B Instruct

Figure 5: Distance between the needle position and selected token index position across three LLMs.
The position depth percentage of the “needle” information is 50%. The x-axis means the layer index
of different LLMs. The y-axis means min(topk index − niddle index). When y = 0, it means the
needle information is covered by the selected token. The needle information has been successfully
discovered in the early layers of all three LLMs.

plot the distance between the needle’s position and the selected token index across all layers in the
LLM. The results reveal three stages in the prompt computation of LLMs. In the first stage, the
initial layers preprocess the input context and search for the ‘needle’. In the second stage, some
early to middle layers identify the needle information. Finally, in the third stage, the LLM prepares
to generate the output based on the selected tokens.

Table 2: Performance of our method on LongBench using different layers as an input filter. A larger
number means better performance. The best score is boldfaced.

Filter layer

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic

Average

Nrtv
QA

Qasp
er

MF-en

HotpotQ
A

2WikiM
QA

Musiq
ue

Gov
Rep

ort

QMSum

MultiN
ew

s

TREC

Triv
iaQ

A

SAMSum

PCount
PRe

LLaMA 3.1 8B Instruct (32 layers)
layer-1 16.32 7.38 13.86 13.9 13.21 5.22 25.61 20.09 24.51 47.0 76.59 39.78 2.55 23.01 23.50
layer-7 16.89 6.83 13.47 13.78 12.23 9.67 26.56 19.49 24.55 58.0 84.87 41.07 6.5 50.69 27.47
layer-12 15.53 7.73 16.53 17.08 13.33 9.88 28.94 20.32 25.01 58.0 88.16 40.42 8.36 43.06 28.03
layer-13 20.71 11.0 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.0 90.7 42.5 7.15 92.22 34.50
layer-14 21.14 13.06 25.45 20.89 17.32 12.9 29.85 22.06 24.91 62.0 89.88 42.33 6.17 92.17 34.30
layer-19 19.06 11.69 27.12 20.98 16.98 14.04 29.17 21.88 25.18 58.0 89.65 40.4 8.75 94.84 34.12
layer-25 24.74 12.33 26.18 18.56 16.3 12.54 28.66 21.75 25.14 61.5 88.78 39.47 8.67 90.59 33.94
layer-31 20.62 9.13 17.51 19.13 13.76 10.07 28.21 21.11 25.16 58.0 88.4 42.37 8.23 58.8 30.04

We then use the first layer that accurately identifies the needle’s position as the input filter. In
our experiments, we find that this layer remains consistent across different inputs. As shown in
Table 2, performance first increases and then decreases as we select the input filter layer from the
beginning to the end. The peak performance is observed at the 13th layer, which supports our layer
selection strategy. Performance remains robust between layers 13 and 25, providing flexibility in
layer selection. Exploring the distinct functions of different layers presents an interesting direction
for future research.

4.4 MORE ABLATION STUDY

To understand the intuition behind selecting tokens with the most attention specifically from the last
query, we study using different rows rather than the last row in the attention matrix for indices se-
lection, as shown in Figure 2 in Appendix D.4. In Figure 9, we introduce two methods: (a) selecting
middle rows of the attention matrix and (2) selecting rows with the largest ℓ2 norm. Both methods
fail in the Needle in a Haystack task, verifying that selecting the last query token is essential.

Note that the performance improvement of GemFilter may stem from two factors: (1) the selection of
important tokens, and (2) the re-computation of these tokens, which might mitigate issues like “lost-
in-the-middle”. To understand whether both factors made contributions, we provide an ablation
study to isolate the contribution of each factor in Figure 10 of Appendix D.5. Furthermore, in
Appendix D.6 Figure 11, we show the index selection difference between Gemfilter and SnapKV.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.5 RUNNING TIME AND GPU MEMORY CONSUMPTION

In this section, we compare the running time and GPU memory consumption of different methods
with FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) support.7 The iterative gen-
eration running time and memory consumption are evaluated on 50 tokens generation. As shown
in Figure 3, our method, GemFilter, achieves a 2.4× speedup compared to SnapKV and standard
attention, with 30% and 70% reductions in GPU memory usage, respectively. It saves both running
time and GPU memory by processing the long input context only during the first stage, as described
in Section 4.3. For the latter two stages, the LLMs only need to handle compressed inputs. In Fig-
ure 6, we present a comparison of running time and GPU memory consumption for Mistral Nemo
12B Instruct and Phi 3.5 Mini 3.8B Instruct using various methods. GemFilter runs faster and uses
less GPU memory than the state-of-the-art methods, as discussed above. Additionally, Figure 3 and
Figure 6 further support our Theorem 3.3 in Section 3.2.

8192 16384 32768 65536 131072
Input token number

0

5

10

15

20

Ru
nn

in
g 

tim
e:

 se
co

nd
s

Mistral Nemo 12B Instruct running time comparison
standard prompt time
standard gen time
snapkv prompt time
snapkv gen time
gemfilter prompt time
gemfilter gen time

8192 16384 32768 65536 131072
Input token number

0

20

40

60

80

GP
U 

Pe
ak

 M
em

or
y:

 G
B

Mistral Nemo 12B Instruct GPU memory comparison
standard prompt GPU mem
standard gen GPU mem
snapkv prompt GPU mem
snapkv gen GPU mem
gemfilter prompt GPU mem
gemfilter gen GPU mem

(a) Mistral Nemo 12B Instruct

8192 16384 32768 65536 131072
Input token number

0

2

4

6

8

10

12

Ru
nn

in
g 

tim
e:

 se
co

nd
s

Phi 3.5 Mini 3.8B Instruct running time comparison
standard prompt time
standard gen time
snapkv prompt time
snapkv gen time
gemfilter prompt time
gemfilter gen time

8192 16384 32768 65536 131072
Input token number

0

50

100

150

200

GP
U 

Pe
ak

 M
em

or
y:

 G
B

Phi 3.5 Mini 3.8B Instruct GPU memory comparison
standard prompt GPU mem
standard gen GPU mem
snapkv prompt GPU mem
snapkv gen GPU mem
gemfilter prompt GPU mem
gemfilter gen GPU mem

(b) Phi 3.5 Mini 3.8B Instruct

Figure 6: Comparison of time and GPU memory usage across different methods on Mistral Nemo
12B Instruct and Phi 3.5 Mini 3.8B Instruct. GemFilter uses the 19th layer as an input filter for both
LLMs. It achieves a 2.4× speedup and reduces GPU memory usage by 30% compared to SnapKV.

5 CONCLUSION

In this work, we presented a novel approach, GemFilter, to accelerate LLM inference and reduce
memory consumption for long context inputs. By leveraging the ability of early LLM layers to iden-
tify relevant information, GemFilter achieves significant improvements over existing techniques.
It demonstrates a 2.4× speedup and 30% reduction in GPU memory usage compared to SOTA
methods, while also showing superior performance on the Needle in a Haystack benchmark. Our
approach is simple, training-free, applicable to various LLMs, and offers enhanced interpretability
by directly inspecting selected tokens. These results not only provide practical benefits for LLM
deployment, but also provide insight into a better understanding of LLM internal mechanisms.

7We exclude H2O as it does not support FlashAttention and thus requires more GPU memory and running
time than standard attention during prompt computation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.com, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms. arXiv
preprint arXiv:2408.07055, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358–13376, Singapore, December 2023b. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024a.

Huiqiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658–1677, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.91.

11

h
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. Longrag: Enhancing retrieval-augmented generation
with long-context llms. arXiv preprint arXiv:2406.15319, 2024c. URL https://arxiv.
org/abs/2406.15319.

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack, 2024.

Jingyao Li, Han Shi, Xin Jiang, Zhenguo Li, Hong Xu, and Jiaya Jia. Quickllama: Query-aware
inference acceleration for large language models. arXiv preprint arXiv:2406.07528, 2024a.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024b.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 963–981, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-acl.57.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Fe-
lipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing language
models for dialogue. OpenAI blog, 2(4), 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference. arXiv preprint arXiv:2406.18139, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models, 2024a. URL https://arxiv.org/abs/2310.03025.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2023.

12

https://arxiv.org/abs/2406.15319
https://arxiv.org/abs/2406.15319
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://aclanthology.org/2024.findings-acl.57
https://aclanthology.org/2024.findings-acl.57
https://arxiv.org/abs/2310.03025


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

A MORE PRELIMINARY

In this section, we introduce some key definitions of language modeling modules. We begin with
the input embedding function and the output embedding function. They are functions that bridge
between the input token space and the real vector space.

Definition A.1 (Input embedding function and input tokens). The input embedding function E :
Vn → Rn×d maps the input tokens to hidden features using the vocabulary dictionary Dvoc ∈
R|V|×d. Let T ∈ Vn be input tokens. Then, we have E(T ) ∈ Rn×d and E(T )i = Dvoc

Ti
∈ Rd for

any i ∈ [n].

Definition A.2 (Output embedding function). The output embedding function G : Rd → R|V| maps
hidden features to the probability logits of the vocabulary dictionary.

We introduce Softmax, which allows self-attention to learn the probability distribution rather than
function anymore.

Definition A.3 (Softmax). Let z ∈ Rn. We define Softmax : Rn → Rn satisfying

Softmax(z) := exp(z)/⟨exp(z),1n⟩.

B DETAILED COMPARISON WITH OTHER METHODS

GemFilter reduces both running time and GPU memory usage in both the prompt computation and
iterative generation phases, whereas SnapKV (Li et al., 2024b) and H2O (Zhang et al., 2023) focus
only on the iterative generation phase. During the prompt computation phase, standard attention
computes and stores the entire KV cache for all layers in GPU memory, which is used during the
generation phase. SnapKV and H2O, on the other hand, compute the entire KV cache for all layers
but only store a portion of it in GPU memory (e.g., k = 1024). They use the selected KV cache for
memory-efficient generation. SnapKV selects important clustered positions of the KV cache from
an ‘observation’ window located at the end of the prompt, while H2O greedily drops tokens based
on cumulative attention scores to retain only a small portion of the KV cache. In contrast, GemFilter
avoids computing the KV cache for all layers during the prompt computation phase.

Compared to SnapKV and H2O, there are two additional differences. First, SnapKV and H2O
maintain separate index sets for each layer and attention head, resulting in m · h index sets in
total. This leads to different behaviors across attention heads, making their intermediate mechanisms
more difficult to interpret. On the other hand, GemFilter uses a single index set, J , allowing for
easier interpretability by enabling the printing of the selected sequence for human review before the
second run (see a real example in Figure 1). Another distinction lies in how positional embeddings
are handled. In SnapKV and H2O, the maximum positional embedding distance is n + t, as the
same positional embedding is used in both the prompt computation and iterative generation phases.
However, in GemFilter’s second run, the maximum positional embedding distance is reduced to k+t
because the input token length is reduced from n to k, and the RoPE function8 is re-computed. This
reduction makes GemFilter more efficient, as the model can better handle shorter input sequences,
as demonstrated in Figure 4 (a).

C PROOF OF TIME COMPLEXITY

Theorem C.1 (Complexity analysis. Restatement of Theorem 3.3). Let n be the input sequence
(prompt) length and d the hidden feature dimensions. In our Algorithm 1, GemFilter uses the r-th
layer as a filter to select k input tokens. Let SnapKV and H2O also use k as their cache size. Assume

8RoPE is the rotary positional embedding (Su et al., 2024), encoding the positional information of tokens.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the LLM has m attention layers, each with h attention heads, and each transformer layer’s param-
eters consume w GPU memory. Assuming that we generate t tokens with the GEN function and
n ≥ max{d, k, t}, the following table summarizes the complexity for standard attention, SnapKV
and H2O, and GemFilter:

Complexity Standard attention SnapKV and H2O GemFilter

Time Prompt Comp. Θ(mhn2d) Θ(mhn2d) Θ(rhn2d)
Iter. generation Θ(mh(nt+ t2)d) Θ(mh(kt+ t2)d) Θ(mh(k2 + t2)d)

GPU mem. Prompt Comp. mw + 2mhnd mw + 2hnd+ 2mhkd rw + 2hnd
Iter. generation mw + 2mh(n+ t)d mw + 2mh(k + t)d mw + 2mh(k + t)d

Proof of Theorem 3.3. We prove each method separately.

Proof of standard attention:

During prompting computation, it takes Θ(mhn2d) time complexity, as there are m transformer
layers, each layer has h attention head, and each head takes Θ(n2d) to calculate the attention (Attni
in Definition 3.2) and Θ(nd) for other operations (gi in Definition 3.2).

During iterative generation, it takes Θ(mh(nt+ t2)d) time complexity.

During prompting computation, mw GPU memory consumption is taken for the model weights and
2mhnd GPU memory consumption for the KV cache.

During iterative generation, it takes mw GPU memory consumption for the model weights and
2mh(n+ t)d GPU memory consumption for the KV cache. Proof of SnapKV and H2O:

During prompting computation, it takes Θ(mhn2d) time complexity, which is the same as standard
attention.

During iterative generation, it takes Θ(mh(kt + t2)d) time complexity, as it reduces the KV cache
size from n to k.

During prompting computation, mw GPU memory is consumed for the model weights, 2hnd for
the selection of the key-value matrix for each layer, and 2mhkd for the selected KV cache.

During iterative generation, mw GPU memory is consumed for the model weights and 2mh(k+ t)d
GPU memory is consumed for the KV cache.

Proof of our Algorithm 1 GemFilter:

During prompting computation, GemFilter takes Θ(rhn2d) time complexity, which is faster than
other methods.

During iterative generation, it takes Θ(mh(k2 + kt + t2)d) = Θ(mh(k2 + t2)d) time complexity,
as it reduces the KV cache size from n to k.

During prompting computation, rw + 2hnd GPU memory is consumed for the model weights and
the selection of the key value matrix for each layer.

During iterative generation, mw + 2mh(k + t)d GPU memory is consumed for the KV cache and
model weights.

Thus, we finish the proof.

D MORE DETAILS ABOUT EXPERIMENTS

D.1 PYTORCH CODE

We provide the PyTorch code of Algorithm 1 GemFilter below, where our method only needs a few
lines of adaptation based on standard attention9.

9
https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/

mistral/modeling_mistral.py

14

https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/mistral/modeling_mistral.py
https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/mistral/modeling_mistral.py


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1 # find the selected input for the specific attention layer
2 def find_context(self, query_states, key_states, k):
3 # repeat kv for group query attention
4 key_states = repeat_kv(key_states, self.num_key_value_groups)
5 # only use the last query token for the top k selection
6 top_k_indices = top_index(key_states, query_states[:, :, -1:, :], k)
7 # sort the index into the correct order
8 return torch.sort(top_k_indices, dim=-1).indecies
9

10 def top_index(keys, queries, k, kernel=5):
11 # calculate the inner product
12 in_pro = torch.matmul(queries, keys.transpose(-1, -2))
13 # cumulate the score over all attention heads in one attention layer
14 in_pro = torch.sum(in_pro, dim=1, keepdim=True)
15 # use 1D pooling for clustering, similar as SnapKV
16 in_pro = F.avg_pool1d(in_pro, kernel=kernel, padding=kernel//2,

stride=1)
17 return torch.topk(in_pro, k, dim=-1).indices

D.2 IMPLEMENTATION DETAILS

All the Needle in a Haystack and LongBench experiments run on A100-40GB GPUs. All the ex-
periments of running time and memory complexity are evaluated on H100-80GB GPUs. We use
HuggingFace v4.43 PyTorch implementation. There is no randomness or training in all baseline
methods or our method. For the SnapKV/H2O, we use 32 recent size/observation window, which
is the optimal choice suggested by Li et al. (2024b); Xu et al. (2024b). However, GemFilter does
not have an observation window. We use a maximum pooling kernel size (line 16 of the PyTorch
code below) of 5 for SnapKV and our method. For generation, we use standard generation (greedy
generation)10, where num beams=1, do sample = False.

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-14) 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) GemFilter-1024 (layer-14). LLaMA 3.1 average score: 0.870.

Figure 7: Needle in a Haystack performance comparison of different filter layers with LLaMA 3.1
8B Instruct model. The x-axis represents the length of the input tokens, while the y-axis shows the
position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning, and 100%
indicates the end). A higher score reflects better performance, meaning more effective retrieval of
the ‘needle’ information.

D.3 MORE NEEDLE IN A HAYSTACK

We provide more results of Section 4.1 here. In Figure 8, GemFilter outperforms All KV (standard
attention) and SnapKV by a large margin with Phi 3.5 Mini 3.8B Instruct. In Figure 7, we use layer
14 of LLama 3.1 as the input filter layer, which is an empirical support of the ablation study in
Section 4.3, as it can also obtain good performance on the Needle in a Haystack benchmark.

10
https://huggingface.co/docs/transformers/v4.43.2/en/main_classes/text_generation

15

https://huggingface.co/docs/transformers/v4.43.2/en/main_classes/text_generation


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

12
47

44

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Phi 3.5 Mini 3.8B Instruct All KV 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) All KV. Phi 3.5 average score: 0.851.

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

12
47

44

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Phi 3.5 Mini 3.8B Instruct SnapKV-1024 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) SnapKV-1024. Phi 3.5 average score: 0.864.

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

12
47

44

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Phi 3.5 Mini 3.8B Instruct GemFilter-1024 (layer-19) 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) GemFilter-1024 (layer-19). Phi 3.5 average score: 0.910.

Figure 8: Needle in a Haystack performance comparison of different methods using the Phi 3.5
Mini 3.8B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. GemFilter significantly outperforms both standard attention
(full KV cache) and SnapKV.

D.4 ABLATION STUDY ON ROW SELECTION

To understand the intuition behind selecting tokens with the most attention specifically from the
last query, we study using different rows rather than the last row in the attention matrix for indices
selection, as shown in Figure 2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct Middle-Row-1024 (layer-19)  
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) Middle-Row-1024 (layer-19). Mistral Nemo average score: 0.198.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct Largest-Row-1024 (layer-19)  
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) Largest-Row-1024 (layer-19). Mistral Nemo average score: 0.125.

Figure 9: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. (a) is using the middle row to select top k indices and (b) is
using the row with largest ℓ2 norm to select top k indices.

In Figure 9, we introduce two methods: (a) selecting the middle rows of the attention matrix and
(2) selecting rows with the largest ℓ2 norm. As we can see, both methods fail in the Needle in a
Haystack task. It shows that selecting the last query token is essential in our method.

D.5 ABLATION STUDY ON RUNS

Note that the performance improvement of GemFilter may stem from two factors: (1) the selection
of important tokens, and (2) the re-computation of these tokens, which might mitigate issues like
“lost-in-the-middle”. To understand whether both factors made contributions, we provide an ablation
study to isolate the contribution of each factor.

In Figure 10, we introduce GemFilter-One-Run, which does not have the second run as GemFilter.
In detail, after getting the indices, which is exactly the same as GemFilter, it directly uses this index
set to evict the KV cache for all attention heads and attention layers and continuously conducts the
iterative generation phase.

D.5.1 DIFFERENCE FROM GEMFILTER AND SNAPKV

It is different from GemFilter as (1) it requires computing full attention matrices for all layers for the
KV cache eviction, so it does not save prompt computation phase complexity; (2) it does not have
the second run so that the RoPE positional distance is not updated as GemFilter, where its distance
between ‘needle’ and query can be very large.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct GemFilter-1024 (layer-19) 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) GemFilter-1024 (layer-19). Mistral Nemo average score: 0.838.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct GemFilter-One-Run-1024 (layer-19)  
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) GemFilter-One-Run-1024 (layer-19). Mistral Nemo average score: 0.827.

Figure 10: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. (a) is our method GemFilter and (b) is the degenerate version
GemFilter-One-Run for ablation study.

It is different from SnapKV as all attention heads and attention layers share the same index set, while
SnapKV has different index sets for different attention heads and different attention layers.

D.5.2 RESULTS

As we can see in Figure 10, the GemFilter-One-Run has a comparable performance with GemFilter,
while it is worse when the distance between the query and the ‘needle’ is large. This is expected
as the RoPE positional distance does not update in GemFilter-One-Run. On the other hand, the
GemFilter-One-Run takes a larger running time complexity and a larger memory consumption than
GemFilter as it requires computing full attention matrices for all layers, while GemFilter only needs
to compute the first few layers.

D.6 INDEX SELECTION

In Figure 11, we visualize the top-k, k = 100, indices over length n = 46, 530 of each attention
layer in GemFilter and SnapKV when using the Mistral Nemo 12B Instruct model and evaluating on
Needle in a Haystack. The GemFilter uses layer-19 as its filter layer. Recall that GemFilter selects
the top-k indices based on the summation of all attention heads, so each attention layer only has one
index set. The SnapKV selects top-k indices for each attention head, so each attention layer only
has h = 32 index sets, where h is the number of attention heads in each attention layer. Thus, for
GemFilter and SnapKV, we plot 1 and 32 index sets for each attention layer, respectively.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 11: Needle in a Haystack visualization of the top-k indices of each attention layer in GemFil-
ter and SnapKV when using the Mistral Nemo 12B Instruct model. The GemFilter uses layer-19
(the same as other experiments) as its filter layer. Both GemFilter and SnapKV use k = 100, i.e.,
the number of selected tokens. The x-axis is the layer index, 40 layers in total. The y-axis is the
input index, where the input token length is n = 46, 530. We use 50% as the position depth percent-
age of the ‘needle’ information. The red dots mean the selected tokens for the corresponding layer
and input tokens. The blue rectangle represents the position of the needle information. The output
of GemFilter is “The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park
on a sunny day.” which is totally correct. The output of SnapKV is “The best thing to do in San
Francisco is eat a sandwich.” which is partially correct.

In Figure 11, the red dots mean the selected tokens for the corresponding layer and input tokens.
The blue rectangle represents the position of the needle information. The output of GemFilter is
“The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.”
which is totally correct. The output of SnapKV is “The best thing to do in San Francisco is eat a
sandwich.” which is partially correct.

We can see that GemFilter is only focused on the needle information and recent information, while
SnapKV focuses on a wide range of tokens, which may distract its attention. We can also conclude
that GemFilter and SnapKV have very different selection mechanisms.

D.7 LLAMA 3.1 CHAT TEMPLATE

In Table 3, we report the performance of different methods on the LongBench QA task using LLaMA
3.1 8B Instruct and its official LLaMA Chat template11. In the following, we show the PyTorch code
of the way we use the LLaMA Chat template.

11
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

19

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 messages = [
2 {"role": "system", "content": ""},
3 {"role": "user", "content": prompt}]
4

5 input = tokenizer.apply_chat_template(messages, add_generation_prompt=
True, return_tensors="pt", return_dict=True).to(device)

In Table 3, we can see that, after applying the template, all methods gain a large improvement in
performance compared to Table 1. Also, we can see that GemFilter has a performance comparable
to that of other state-of-the-art methods. It is interesting to understand the difference between the
attention mechanisms with and without using a chat template. We leave it as our future work.

Table 3: Performance comparison on LongBench across various methods when using LLaMA 3.1
8B Instruct and its official LLaMA Chat template. A larger number means better performance. The
best score is boldfaced.

Method

Single-Document QA Multi-Document QA

AverageNrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique
All KV 25.08 44.06 55.08 47.86 49.19 27.46 41.46
MInference 29.61 43.89 54.76 51.72 49.55 28.17 42.95
SnapKV-1024 29.01 41.67 56.22 56.81 49.32 31.56 44.10
GemFilter-1024 22.8 40.78 48.05 54.33 50.03 30.03 41.00

D.8 MORE RESULTS OF INDEX SELECTION

In this section, we provide more results of index selection on LLaMA 3.1 8B Instruct and Phi 3.5
Mini 3.8B Instruct, where the setting is similar as Figure 11.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 12: Needle in a Haystack visualization of the top-k indices of each attention layer in GemFil-
ter and SnapKV when using the LLaMA 3.1 8B Instruct model. The GemFilter uses layer-13 (the
same as other experiments) as its filter layer. Both GemFilter and SnapKV use k = 1024, i.e., the
number of selected tokens. The x-axis is the layer index, 32 layers in total. The y-axis is the input
index, where the input token length is n = 108, 172. We use 50% as the position depth percentage
of the ‘needle’ information. The red dots mean the selected tokens for the corresponding layer and
input tokens. The blue rectangle represents the position of the needle information. The output of
GemFilter is “Eat a sandwich and sit in Dolores Park on a sunny day.” which is totally correct. The
output of SnapKV is “Eat a sandwich at a deli in the Mission District.” which is partially correct.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: Needle in a Haystack visualization of the top-k indices of each attention layer in Gem-
Filter and SnapKV when using the Phi 3.5 Mini 3.8B Instruct model. The GemFilter uses layer-19
(the same as other experiments) as its filter layer. Both GemFilter and SnapKV use k = 1024,
i.e., the number of selected tokens. The x-axis is the layer index, 32 layers in total. The y-axis is
the input index, where the input token length is n = 122, 647. We use 50% as the position depth
percentage of the ‘needle’ information. The red dots mean the selected tokens for the corresponding
layer and input tokens. The blue rectangle represents the position of the needle information. The
output of GemFilter is “Sit in Dolores Park on a sunny day and eat a sandwich.” which is totally
correct. The output of SnapKV is “Eat a sandwich.” which is partially correct.

22


	Introduction
	Related Works
	Method
	Our Algorithm: GemFilter
	Running Time and Memory Complexity Analysis

	Experiments
	Needle in a Haystack
	LongBench
	Ablation Study: Filter Layer Choice
	More Ablation Study
	Running Time and GPU Memory Consumption

	Conclusion
	More Preliminary
	Detailed Comparison with Other Methods
	Proof of Time Complexity
	More Details about Experiments
	PyTorch Code
	Implementation Details
	More Needle in a Haystack
	Ablation Study on Row Selection
	Ablation Study on Runs
	Difference from GemFilter and SnapKV
	Results

	Index Selection
	LLaMA 3.1 Chat Template
	More Results of Index Selection


